DM - Suites adjacentes.

I) Théorème des suites adjacentes.

Définition 1

Deux suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont dites adjacentes si elles vérifient les propriétés suivantes :

- $(u_n)_{n\in\mathbb{N}}$ est croissante,
- $(\nu_n)_{n\in\mathbb{N}}$ est décroissante,
- $\bullet \lim_{n\to+\infty}u_n-v_n=0.$

On considère donc deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ telles que ces deux suites soient adjacentes. On pose pour tout entier naturel $c_n = v_n - u_n$.

- 1. (a) Démontrer que $(c_n)_{n\in\mathbb{N}}$ est décroissante.
 - (b) En déduire que pour tout entier naturel n, $u_n \le v_n$.
- 2. (a) Montrer que pour tout entier naturel n, $u_n \le v_0$.
 - (b) En déduire que $(u_n)_{n\in\mathbb{N}}$ est une suite convergente. On notera $l\in\mathbb{R}$ sa limite.
- 3. En vous inspirant de la question précédente, démontrer que $(v_n)_{n\in\mathbb{N}}$ est une suite convergente. On notera $l'\in\mathbb{R}$ sa limite.
- 4. En vous aidant de la suite $(c_n)_{n \in \mathbb{N}}$, démontrer que l = l'.

Vous venez de démontrer le Théorème des suites adjacentes.

Théorème 2

Deux suites adjacentes sont convergentes et convergent vers la même limite.

II) Application.

On considère les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par $u_0=1$, $v_0=2$ et pour tout entier naturel n on a :

$$\begin{cases} u_{n+1} = \frac{2}{v_{n+1}} \\ v_{n+1} = \frac{u_n + v_n}{2} \end{cases}.$$

1. Démontrer pour tout entier naturel n, la propriété P_n : $u_n > 0$ et $v_n > 0$.

Terminale Générale Page 1/2

Les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont donc bien définies. Dans la suite des questions, on souhaite démontrer que pour tout entier naturel n, on a

$$0 < u_n < u_{n+1} < v_{n+1} < v_n$$
.

- 2. (a) Calculer u_1 et v_1 .
 - (b) En déduire que $0 < u_0 < u_1 < v_1 < v_0$.
- 3. Soit $n \ge 1$ un entier naturel fixé. On suppose maintenant qu'on a

$$0 < u_{n-1} < u_n < v_n < v_{n-1}$$
.

- (a) Montrer que $v_{n+1} < v_n$.
- (b) Montrer que $u_{n+1} > u_n$.
- (c) i. Montrer que pour tout entier naturel n, $u_{n+1} \times v_{n+1} = 2$.
 - ii. À l'aide de la question précédente, montrer que $v_{n+1} u_{n+1} = \frac{(u_n v_n)^2}{2(u_n + v_n)}$.
 - iii. En déduire que $v_{n+1} > u_{n+1}$.
- 4. Déduire des questions précédentes que pour tout entier naturel n, on a

$$0 < u_n < u_{n+1} < v_{n+1} < v_n$$
.

5. Donner le sens de variation des suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$.

Montrons maintenant que $\lim_{n\to+\infty} u_n - v_n = 0$.

6. À l'aide de la question 3cii), montrer que pour tout entier naturel n, on a

$$0 < v_{n+1} - u_{n+1} \le \frac{(v_n - u_n)^2}{4} \le \frac{v_n - u_n}{4}.$$

7. Démontrer par récurrence que pour tout entier $n \ge 0$, on a

$$0 \le v_{n+1} - u_{n+1} \le \frac{v_0 - u_0}{4^n}.$$

- 8. En déduire que $\lim_{n\to+\infty} u_{n+1} v_{n+1} = 0$.
- 9. Justifier que les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes, et donc qu'elles convergent vers une même limite qu'on notera l.
- 10. À l'aide de la question 3ci), déterminer la valeur de l.

Ces deux suites nous permettent donc d'obtenir un encadrement décimal $u_n < \sqrt{2} < v_n$ avec une grande précision, et cela très rapidement (puisque $v_n - u_n \le \frac{1}{A^n}$)!

Cette méthode, basée sur les suites adjacentes, peut se généraliser pour déterminer un encadrement décimal de \sqrt{p} en considérant les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par

$$\begin{cases} u_0 = \alpha, & \text{avec} \quad \alpha \in \mathbb{R}_+^*, \\ v_0 = \frac{p}{u_0} \end{cases}$$

et pour tout entier naturel n,

$$\begin{cases} u_{n+1} = \frac{u_n + v_n}{2} \\ v_{n+1} = \frac{p}{u_{n+1}} \end{cases}$$

Terminale Générale Page 2/2